
Yves Younan

DistriNet, Department of Computer Science

Katholieke Universiteit Leuven

Belgium

Yves.Younan@cs.kuleuven.ac.be

C and C++: vulnerabilities, exploits

and countermeasures

mailto:Yves.Younan@cs.kuleuven.ac.be

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 1272

Introduction

C/C++ programs: some vulnerabilities exist which

could allow code injection attacks

Code injection attacks allow an attacker to execute

foreign code with the privileges of the vulnerable

program

Major problem for programs written in C/C++

Focus will be on:

 Illustration of code injection attacks

Countermeasures for these attacks

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 1273

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 1274

Memory management in C/C++

Memory is allocated in multiple ways in C/C++:

 Automatic (local variables in a function)

 Static (global variables)

Dynamic (malloc or new)

Programmer is responsible for

Correct allocation and dealocation in the case of

dynamic memory

 Appropriate use of the allocated memory

 Bounds checks, type checks

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 1275

Memory management in C/C++

Memory management is very error prone

Typical bugs:

Writing past the bounds of the allocated memory

Dangling pointers: pointers to deallocated memory

Double frees: deallocating memory twice

Memory leaks: never deallocating memory

For efficiency reasons, C/C++ compilers don‟t

detect these bugs at run-time:

C standard states behavior of such programs is

undefined

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 1276

Process memory layout

Arguments/Environment

Stack

Unused and

Shared Memory

Heap

Static & Global Data

Program code

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 1277

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Format string vulnerabilities

 Integer errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 1278

Code injection attacks

To exploit a vulnerability and execute a code

injection attack, an attacker must:

 Find a bug that can allow an attacker to overwrite

interesting memory locations

 Find such an interesting memory location

Copy target code in binary form into the memory of a

program

 Can be done easily, by giving it as input to the program

Use the vulnerability to modify the location so that the

program will execute the injected code

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 1279

Interesting memory locations

for attackers

Stored code addresses: modified -> code can be

executed when the program loads them into the IP

Return address: address where the execution must

resume when a function ends

Global Offset Table: addresses here are used to

execute dynamically loaded functions

 Virtual function table: addresses are used to know

which method to execute (dynamic binding in C++)

Dtors functions: called when programs exit

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12710

Interesting memory locations

Function pointers: modified -> when called, the

injected code is executed

Data pointers: modified -> indirect pointer

overwrites

 First the pointer is made to point to an interesting

location, when it is dereferenced for writing the

location is overwritten

Attackers can overwrite many locations to perform

an attack

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12711

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12712

Buffer overflows: impact

Code red worm: estimated loss world-wide: $ 2.62

billion

Sasser worm: shut down X-ray machines at a

swedish hospital and caused Delta airlines to

cancel several transatlantic flights

Zotob worm: crashed the DHS‟ US-VISIT program

computers, causing long lines at major

international airports

All three worms used stack-based buffer overflows

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12713

Buffer overflows: numbers

NIST national vulnerability database (jan-oct

2008):

 486 buffer overflow vulnerabilities (10% of total

vulnerabilities reported)

 347 of these have a high severity rating

 These buffer overflow vulnerabilities make up 15% of

the vulnerabilities with high severity

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12714

Buffer overflows: what?

Write beyond the bounds of an array

Overwrite information stored behind the array

Arrays can be accessed through an index or

through a pointer to the array

Both can cause an overflow

Java: not vulnerable because it has no pointer

arithmetic and does bounds checking on array

indexing

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12715

Buffer overflows: how?

How do buffer overflows occur?

 By using an unsafe copying function (e.g. strcpy)

 By looping over an array using an index which may be

too high

 Through integer errors

How can they be prevented?

Using copy functions which allow the programmer to

specify the maximum size to copy (e.g. strncpy)

Checking index values

 Better checks on integers

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12716

Buffer overflows: example

void function(char *input) {

char str[80];

strcpy(str, input);

}

int main(int argc, char **argv) {

function(argv[1]);

}

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12717

Shellcode

Small program in machine code representation

 Injected into the address space of the process

 int main() {

 printf("You win\n");
 exit(0)
 }
 static char shellcode[] =
 "\x6a\x09\x83\x04\x24\x01\x68\x77"
 "\x69\x6e\x21\x68\x79\x6f\x75\x20"
 "\x31\xdb\xb3\x01\x89\xe1\x31\xd2"
 "\xb2\x09\x31\xc0\xb0\x04\xcd\x80"
 "\x32\xdb\xb0\x01\xcd\x80";

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12718

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12719

Stack-based buffer overflows

Stack is used at run time to manage the use of

functions:

 For every function call, a new record is created

 Contains return address: where execution should resume

when the function is done

 Arguments passed to the function

 Local variables

 If an attacker can overflow a local variable he can

find interesting locations nearby

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12720

Stack-based buffer overflows

Old unix login vulnerability
 int login() {

 char user[8], hash[8], pw[8];

 printf("login:"); gets(user);

 lookup(user,hash);

 printf("password:"); gets(pw);

 if (equal(hash, hashpw(pw)))

 return OK;

 else

 return INVALID;

 }

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12721

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12722

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12723

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12724

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12725

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12726

Stack-based buffer overflows

Attacker can specify a password longer than 8

characters

Will overwrite the hashed password

Attacker enters:

 AAAAAAAABBBBBBBB

Where BBBBBBBB = hashpw(AAAAAAAA)

Login to any user account without knowing the

password

Called a non-control data attack

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12727

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12728

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0
SP

FP

IP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12729

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

Arguments f1
SP

FPIP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12730

Overwritten return address

Injected code

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

Arguments f1

Return address f1

Saved frame pointer f1

Buffer
SP

FP

IP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12731

Overwritten return address

Injected code

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

Arguments f1

SP

FP

IP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12732

Injected code

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0
SP

IP

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12733

Stack-based buffer overflows

Exercises

 From Gera‟s insecure programming page

 http://community.corest.com/~gera/InsecureProgram

ming/

 For the following programs:

 Assume Linux on Intel 32-bit

 Draw the stack layout right after gets() has executed

 Give the input which will make the program print out “you

win!”

http://community.corest.com/~gera/InsecureProgramming/
http://community.corest.com/~gera/InsecureProgramming/

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12734

Stack-based buffer overflows

 int main() {

 int cookie;

 char buf[80];

 printf("b: %x c: %x\n", &buf, &cookie);

 gets(buf);

 if (cookie == 0x41424344)

 printf("you win!\n");

 }

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12735

Return address

Stack-based buffer overflows

main:

buf[80]

gets()

printf()

Stack

SP

FP

IP

cookie

...

Frame pointer

cookie

buf

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12736

Return address

Stack-based buffer overflows

main:

buf[80]

gets()

printf()

Stack

SP

FP

IP

cookie

...

Frame pointer

ABCD

buf

perl -e 'print "A"x80; print "DCBA"' | ./s1

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12737

Stack-based buffer overflows

 int main() {

 int cookie;

 char buf[80];

 printf("b: %x c: %x\n", &buf, &cookie);

 gets(buf);

 }

 buf is at location 0xbffffce4 in memory

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12738

Return address

Stack-based buffer overflows

main:

buf[80]

gets()

printf()

Stack

SP

FP

IP

cookie

...

Frame pointer

cookie

buf

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12739

Stack-based buffer overflows

#define RET 0xbffffce4

int main() {
 char buf[93];
 int ret;
 memset(buf, '\x90', 92);
 memcpy(buf, shellcode, strlen(shellcode));
 *(long *)&buf[88] = RET;
 buf[92] = 0;
 printf(buf);
}

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12740

0xbffffce4

Stack-based buffer overflows

main:

buf[80]

gets()

printf()

Stack

0xbffffce4

FP

IP

cookie

...

0x90909090

0x90909090

Injected code

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12741

Finding inserted code

 Generally (on kernels < 2.6) the stack will start at a static
address

 Finding shell code means running the program with a
fixed set of arguments/fixed environment

 This will result in the same address

 Not very precise, small change can result in different
location of code

 Not mandatory to put shellcode in buffer used to overflow

 Pass as environment variable

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12742

Controlling the environment

Program name

High addr

Low addr

0,0,0,0

Stack start:

0xBFFFFFFF

Env var n

Env var n-1

…

Env var 0

Arg n

Arg n-1

…

Arg 0

Passing shellcode as

environment variable:

Stack start - 4 null bytes

- strlen(program name) -

- null byte (program name)

- strlen(shellcode)

0xBFFFFFFF - 4

- strlen(program name) -

- 1

- strlen(shellcode)

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12743

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12744

Indirect Pointer Overwriting

Overwrite a target memory location by overwriting

a data pointer

 An attackers makes the data pointer point to the target

location

When the pointer is dereferenced for writing, the target

location is overwritten

 If the attacker can specify the value of to write, he can

overwrite arbitrary memory locations with arbitrary

values

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12745

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0
SP

FP

IP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

data

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12746

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Buffer

Pointer

data

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12747

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FPIP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Overwritten pointer

data

Injected code

f1:

buffer[]

overflow()
...

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12748

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Modified return address

Saved frame pointer f1

Overwritten pointer

data

Injected code

f1:

buffer[]

overflow()
...

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12749

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0
SP

FP

IP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

data

Injected code

f1:

buffer[]

overflow()
...

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12750

Indirect Pointer Overwriting

static unsigned int a = 0;

int main(int argc, char **argv) {

 int *b = &a;

 char buf[80];

 printf("buf: %08x\n", &buf);

 gets(buf);

 *b = strtoul(argv[1], 0, 16);

}

buf is at 0xbffff9e4

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12751

Indirect Pointer Overwriting

f1:

buffer[]

overflow()
...

Stack

SP

FP

IP

main:

buf[80]

gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

a

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12752

Indirect Pointer Overwriting

#define RET 0xbffff9e4+88

int main() {

 char buf[84];

 int ret;

 memset(buf, '\x90', 84);

 memcpy(buf, shellcode, strlen(shellcode));

 *(long *)&buffer[80] = RET;

 printf(buffer);

}

./exploit | ./s3 bffff9e4

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12753

Indirect Pointer Overwriting

f1:

buffer[]

overflow()
...

Stack

SP

FPIP

main:

buf[80]

gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12754

Indirect Pointer Overwriting

f1:

buffer[]

overflow()
...

Stack

SP

FP
IP

main:

buf[80]

gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12755

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12756

Heap-based buffer overflows

Heap contains dynamically allocated memory

Managed via malloc() and free() functions of the

memory allocation library

 A part of heap memory that has been processed by

malloc is called a chunk

No return addresses: attackers must overwrite data

pointers or function pointers

Most memory allocators save their memory

management information in-band

Overflows can overwrite management information

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12757

Used chunk

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

User data

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12758

Free chunk: doubly linked list of free chunks

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12759

Heap management in dlmalloc

Removing a chunk from the doubly linked list of

free chunks:

This is:

#define unlink(P, BK, FD) {

BK = P->bk;

FD = P->fd;

FD->bk = BK;

BK->fd = FD; }

P->fd->bk = P->bk

P->bk->fd = P->fd

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12760

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12761

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12762

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12763

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12764

Heap-based buffer overflows

Size of prev. chunk

Size of chunk1

Chunk1

User data

Size of chunk1

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12765

Heap-based buffer overflows

Size of prev. chunk

Size of chunk1

Chunk1

Injected code

Size of chunk1

Size of chunk2

Chunk2

Old user data

fwd: pointer to target

bck: pointer to inj. code

Return address

call f1

...

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12766

Heap-based buffer overflows

Size of prev. chunk

Size of chunk1

Chunk1

Injected code

Size of chunk1

Size of chunk2

Chunk2

Old user data

fwd: pointer to target

bck: pointer to inj. code

Overwritten return address

After unlink

call f1

...

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12767

Dangling pointer references

Pointers to memory that is no longer allocated

Dereferencing is unchecked in C

Generally leads to crashes

Can be used for code injection attacks when

memory is deallocated twice (double free)

Double frees can be used to change the memory

management information of a chunk

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12768

Double free

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12769

Double free

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12770

Double free

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12771

Double free

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12772

Double free

Unlink: chunk stays linked because it points to

itself

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12773

Double free

 If unlinked to reallocate: attackers can now write to

the user data part

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12774

Double free

 It is still linked in the list too, so it can be unlinked

again

Size of prev. chunk

Size of chunk2

Chunk2

Injected code

Forward pointer

Backward pointer

Return address

call f1

...

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12775

Double free

After second unlink

Size of prev. chunk

Size of chunk2

Chunk2

Injected code

Forward pointer

Backward pointer

Overwritten return address

call f1

...

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12776

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12777

Overflows in the data/bss

segments

Data segment contains global or static compile-

time initialized data

Bss contains global or static uninitialized data

Overflows in these segments can overwrite:

 Function and data pointers stored in the same

segment

Data in other segments

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12778

Overflows in the data/bss

segments

Data

Ctors

ctors: pointers to functions to

execute at program start

dtors: pointers to functions to

execute at program finish

GOT: global offset table: used

for dynamic linking: pointers to

absolute addresses

Dtors

GOT

BSS

Heap

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12779

Overflow in the data segment

char buf[256]={1};

int main(int argc,char **argv) {

 strcpy(buf,argv[1]);

}

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12780

Overflow in the data segment

Data

Ctors

0x00000000Dtors

GOT

BSS

buf[256]

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12781

Overflow in the data section

 int main (int argc, char **argv) {

 char buffer[476];
 char *execargv[3] = { "./abo7", buffer, NULL };
 char *env[2] = { shellcode, NULL };
 int ret;
 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 - strlen

(shellcode);
 memset(buffer, '\x90', 476);
 *(long *)&buffer[472] = ret;
 execve(execargv[0],execargv,env);
 }

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12782

Overflow in the data segment

Data

Ctors

RETDtors

GOT

BSS

buf[256]

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12783

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Format string vulnerabilities

 Integer errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12784

Format string vulnerabilities

Format strings are used to specify formatting of

output:

 printf(“%d is %s\n”, integer, string); -> “5 is

five”

Variable number of arguments

Expects arguments on the stack

Problem when attack controls the format string:

 printf(input);

 should be printf(“%s”, input);

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12785

Format string vulnerabilities

Can be used to read

arbitrary values from

the stack

 “%s %x %x”

Will read 1 string and

2 integers from the

stack

Stack

Other stack frames

Arguments printf:

format string

Return address printf

SP

FP
Saved frame ptr printf

Return address f0

Saved frame pointer f0

Local variable f0

string

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12786

Format string vulnerabilities

Can be used to read

arbitrary values from

the stack

 “%s %x %x”

Will read 1 string and

2 integers from the

stack

Stack

Other stack frames

Arguments printf:

format string

Return address printf

SP

FP
Saved frame ptr printf

Return address f0

Saved frame pointer f0

Local variable f0

string

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12787

Format string vulnerabilities

Format strings can also write data:

%n will write the amount of (normally) printed

characters to a pointer to an integer

 “%200x%n” will write 200 to an integer

Using %n, an attacker can overwrite arbitrary

memory locations:

 The pointer to the target location can be placed some

where on the stack

 Pop locations with “%x” until the location is reached

Write to the location with “%n”

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12788

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Format string vulnerabilities

 Integer errors

 Integer overflows

 Integer signedness errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12789

Integer overflows

 Integer wraps around 0

Can cause buffer overflows

malloc(0) -> will malloc only 8 bytes

int main(int argc, char **argv) {

unsigned int a;

char *buf;

a = atol(argv[1]);

buf = (char*) malloc(a+1);

}

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12790

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Format string vulnerabilities

 Integer errors

 Integer overflows

 Integer signedness errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12791

Integer signedness errors

Value interpreted as both signed and unsigned

For a negative a:

 In the condition, a is smaller than 100

 Strncpy expects an unsigned integer: a is now a large

positive number

int main(int argc, char **argv) {

int a;

char buf[100];

a = atol(argv[1]);

if (a < 100)

strncpy(buf, argv[2], a); }

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12792

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Hardened Libraries

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12793

Safe languages

Change the language so that correctness can be

ensured

 Static analysis to prove safety

 If it can‟t be proven safe statically, add runtime checks

to ensure safety (e.g. array unsafe statically -> add

bounds checking)

 Type safety: casts of pointers are limited

 Less programmer pointer control

Runtime type-information

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12794

Safe languages

Memory management: no explicit management

 Garbage collection: automatic scheduled deallocation

 Region-based memory management: deallocate regions as

a whole, pointers can only be dereferenced if region is live

Focus on languages that stay close to C

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12795

Safe languages

Cyclone: Jim et al.

 Pointers:

 NULL check before dereference of pointers (*ptr)

 New type of pointer: never-NULL (@ptr)

 No artihmetic on normal (*) & never-NULL (@) pointers

 Arithmetic allowed on special pointer type (?ptr): contains

extra bounds information for bounds check

 Uninitialized pointers can‟t be used

Region-based memory management

 Tagged unions: functions can determine type of

arguments: prevents format string vulnerabilities

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12796

Safe languages

CCured: Necula et al.

 Stays as close to C as possible

 Programmer has less control over pointers: static

analysis determines pointer type

 Safe: no casts or arithmetic; only needs NULL check

 Sequenced: only arithmetic; NULL and bounds check

 Dynamic: type can‟t be determined statically; NULL,

bounds and run-time type check

Garbage collection: free() is ignored

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12797

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Hardened Libraries

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12798

Probabilistic countermeasures

Based on randomness

Canary-based approach

 Place random number in memory

Check random number before performing action

 If random number changed an overflow has occurred

Obfuscation of memory addresses

Address Space Layout Randomization

 Instruction Set Randomization

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 12799

Canary-based countermeasures

StackGuard (SG): Cowan et al.

 Places random number before the return address

when entering function

 Verifies that the random number is unchanged when

returning from the function

 If changed, an overflow has occurred, terminate

program

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127100

StackGuard (SG)

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Buffer

Pointer

data

Canary

Canary

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127101

Return address f1

Saved frame pointer f1

StackGuard (SG)

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FPIP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Injected code

Pointer

data

Canary

Canary

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127102

Canary-based countermeasures

Propolice (PP): Etoh & Yoda

 Same principle as StackGuard

 Protects against indirect pointer overwriting by

reorganizing the stack frame:

 All arrays are stored before all other data on the stack (i.e.

right next to the random value)

 Overflows will cause arrays to overwrite other arrays or the

random value

Part of GCC >= 4.1

 „Stack Cookies in Visual Studio

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127103

Propolice (PP)

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Buffer

Pointer
data

Canary

Canary

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127104

Return address f1

Saved frame pointer f1

Canary

Propolice (PP)

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Buffer

Pointer
data

Canary

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127105

Heap protector (HP)

Size of prev. chunk

Size of chunk1

Chunk1

User data

Size of chunk1

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Checksum

Checksum

Heap protector: Robertson

et al.

 Adds checksum to the chunk

information

 Checksum is XORed with a

global random value

 On allocation checksum is

added

 On free (or other operations)

checksum is calculated,

XORed, and compared

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127106

Contrapolice (CP)

Size of prev. chunk

Size of chunk1

Chunk1

User data

Size of chunk1

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Canary1

Canary1

Canary2

Canary2

Contrapolice: Krennmair

 Stores a random value before

and after the chunk

 Before exiting from a string

copy operation, the random

value before is compared to the

random value after

 If they are not the same, an

overflow has occured

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127107

Problems with canaries

Random value can leak

For SG: Indirect Pointer Overwriting

For PP: overflow from one array to the other (e.g.

array of char overwrites array of pointer)

For HP, SG, PP: 1 global random value

CP: different random number per chunk

CP: no protection against overflow in loops

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127108

Probabilistic countermeasures

Obfuscation of memory addresses

 Also based on random numbers

Numbers used to „encrypt‟ memory locations

Usually XOR

 a XOR b = c

 c XOR b = a

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127109

Obfuscation of memory addresses

PointGuard: Cowan et al.

 Protects all pointers by encrypting them (XOR) with a

random value

Decryption key is stored in a register

 Pointer is decrypted when loaded into a register

 Pointer is encrypted when loaded into memory

 Forces the compiler to do all memory access via

registers
Can be bypassed if the key or a pointer leaks

Randomness can be lowered by using partial overwrite

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127110

Partial overwrite

XOR:

0x41424344 XOR 0x20304050 = 0x61720314

 However, XOR „encrypts‟ bitwise

0x44 XOR 0x50 = 0x14

If injected code relatively close:

1 byte: 256 possibilities

2 bytes: 65536 possibilities

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127111

Partial overwrite

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Other Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Buffer

Encrypted pointer

Data

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127112

Partial overwrite

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Other Local variables f0

SP

FPIP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Injected code

Data

Encrypted pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127113

Modified return address

Partial overwrite

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Other Local variables f0

SP

FPIP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Saved frame pointer f1

Injected code

Data

Encrypted pointer

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127114

Probabilistic countermeasures

Address space layout randomization: PaX team

Compiler must generate PIC

Randomizes the base addresses of the stack, heap,

code and shared memory segments

Makes it harder for an attacker to know where in

memory his code is located

Can be bypassed if attackers can print out memory

addresses: possible to derive base address

 Implemented in Windows Vista / Linux >= 2.6.12

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127115

Probabilistic countermeasures

Randomized instruction sets: Barrantes et al./Kc et

al.

 Encrypts instructions while they are in memory

Decrypts them when needed for execution

 If attackers don‟t know the key their code will be

decrypted wrongly, causing invalid code execution

 If attackers can guess the key, the protection can be

bypassed

High performance overhead in prototypes: should be

implemented in hardware

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127116

Probabilistic countermeasures

Rely on keeping memory secret

Programs that have buffer overflows could also

have information leakage

Example:

 char buffer[100];

 strncpy(buffer, input, 100);

 Printf(“%s”, buffer);

Strncpy does not NULL terminate (unlike strcpy),

printf keeps reading until a NULL is found

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127117

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Hardened Libraries

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127118

Separation and replication of

information

Replicate valuable control-flow information

Copy control-flow information to other memory

Copy back or compare before using

Separate control-flow information from other data

Write control-flow information to other places in

memory

 Prevents overflows from overwriting control flow

information

These approaches do not rely on randomness

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127119

Separation of information

Dnmalloc: Younan et al.

Does not rely on random numbers

 Protection is added by separating the chunk

information from the chunk

Chunk information is stored in separate regions

protected by guard pages

Chunk is linked to its information through a hash table

 Fast: performance impact vs. dlmalloc: -10% to +5%

Used as the default allocator for Samhein (open

source IDS)

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127120

Dnmalloc

Control data Regular data

Management information

Low addresses

High addresses

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Management information

Management information

Management information

Chunkinfo region

Guard page

Ptr to chunkinfo

Ptr to chunkinfo

Ptr to chunkinfo

Ptr to chunkinfo

Guard page

Hashtable

Ptr to chunkinfo

Management information

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127121

Separation of information

Dnstack (temporary name): Younan et al.

Does not rely on random numbers

 Separates the stack into multiple stacks, 2 criteria:

 Risk of data being an attack target (target value)

 Risk of data being used as an attack vector (source value)

• Return addres: target: High; source: Low

• Arrays of characters: target: Low; source: High

Default: 5 stacks, separated by guard pages

 Stacks can be reduced by using selective bounds

checking: to reduce source risk: ideally 2 stacks

 Fast: max. performance overhead: 2-3% (usually 0)

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127122

“Dnstack”

Stacks are at a fixed location from each other

 If source risk can be reduced: maybe only 2 stacks

Map stack 1,2 onto stack one

Map stack 3,4,5 onto stack two

Array of

characters

Guard page

Structures

(with char.

array)

Array of

structures

(with char

array)

Guard page

Structs (no

char array)

Array of struct

(no char

array)

Arrays

Alloca()

Floats

Guard page

Array of

pointers

Structures (no

arrays)

Integers

Guard page

Pointers

Saved

registers

Guard page

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127123

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Hardened Libraries

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127124

Paging-based countermeasures

Non-executable stack: Solar Designer

Makes stack segment non-executable

 Prevents exploits from storing code on the stack

Code can still be stored on the heap

Can be bypassed using a return-into-libc attack

 make the return address point to existing function (e.g.

system) and use the overflow to put arguments on the

stack

 Some programs need an executable stack

Non-executable stack/heap: PaX team

Can be bypassed with return-into-libc

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127125

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Hardened Libraries

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127126

Hardened libraries

FormatGuard: Cowan et al.

Most format string attacks have more specifiers in the

string than arguments

Counts the arguments the format string expects and

compares them to the nr of arguments passed

 If more: format string -> program is terminated

Libformat: Robbins

Checks format string: if located in writable memory

and contains %n -> terminate program

Visual Studio: removes %n

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127127

Lecture overview

Memory management in C/C++

Vulnerabilities

 Buffer overflows

 Format string vulnerabilities

 Integer errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127128

Embedded and mobile devices

Vulnerabilities also present and exploitable on

embedded devices

 iPhone LibTIFF vulnerability massively exploited

by to unlock phones

Almost no countermeasures

Windows CE6 has stack cookies

Different priorities: performance is much more

important on embedded devices

Area of future research

C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 Yves Younan / 127129

Conclusion

Many attacks, countermeasures, counter-

countermeasures, etc. exist

Search for good and performant countermeasures to

protect C continues

Best solution: switch to a safe language, if possible

More information:
 Y. Younan, W. Joosen and F. Piessens. Code injection in C and C++:

A survey of vulnerabilities and Countermeasures

 Y. Younan. Efficient countermeasures for software vulnerabilities due

to memory management errors

 U. Erlingsson. Low-level Software Security: Attacks and Defenses

