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Introduction

» C/C++ programs: some vulnerabilities exist which
could allow code injection attacks

» Code injection attacks allow an attacker to execute

L

foreign code with the privileges of the vulnerable
program

» Major problem for programs written in C/C++

» Focus will be on:
> lllustration of code injection attacks
» Countermeasures for these attacks
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» Memory management in C/C++
» \ulnerabilities

» Countermeasures

» Conclusion
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Memory management in C/C++

» Memory is allocated in multiple ways in C/C++:
» Automatic (local variables in a function)
» Static (global variables)
» Dynamic (malloc or new)

» Programmer is responsible for

» Correct allocation and dealocation in the case of

dynamic memory
» Appropriate use of the allocated memory
= Bounds checks, type checks A\
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Memory management in C/C++

» Memory management is very error prone

» Typical bugs:
» \Writing past the bounds of the allocated memory
» Dangling pointers: pointers to deallocated memory
» Double frees: deallocating memory twice
» Memory leaks: never deallocating memory

» For efficiency reasons, C/C++ compilers don't
detect these bugs at run-time:

» C standard states behavior of such programs is P
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Process memory layout

Arguments/Environment

Stack

Unused and
Shared Memory

Heap

Static & Global Data

Program code
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| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion
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Code injection attacks

» To exploit a vulnerability and execute a code
Injection attack, an attacker must:

» Find a bug that can allow an attacker to overwrite
Interesting memory locations

» Find such an interesting memory location
» Copy target code in binary form into the memory of a
program
= Can be done easily, by giving it as input to the program

» Use the vulnerability to modify the location so that the
program will execute the injected code A\

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 g 1127 %@;s‘;




-+ DishriNet -

Interesting memory locations

for attackers

» Stored code addresses: modified -> code can be
executed when the program loads them into the IP

» Return address: address where the execution must
resume when a function ends

» Global Offset Table; addresses here are used to
execute dynamically loaded functions

» Virtual function table: addresses are used to know
which method to execute (dynamic binding in C++)

» Dtors functions: called when programs exit
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Interesting memory locations

» Function pointers: modified -> when called, the
Injected code is executed

» Data pointers: modified -> indirect pointer
overwrites

» First the pointer is made to point to an interesting
ocation, when it is dereferenced for writing the
ocation is overwritten

» Attackers can overwrite many locations to perform
an attack

o,
f"%
)
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| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors
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Buffer overflows: impact

» Code red worm: estimated loss world-wide: $ 2.62
billion
» Sasser worm: shut down X-ray machines at a

swedish hospital and caused Delta airlines to
cancel several transatlantic flights

» Zotob worm: crashed the DHS' US-VISIT program
computers, causing long lines at major
International airports

>AII three worms used stack based buffer overflows &\

3 3
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Buffer overflows: numbers

» NIST national vulnerability database (jan-oct
2008).

» 486 buffer overflow vulnerabilities (10% of total
vulnerabilities reported)

» 347 of these have a high severity rating

» These buffer overflow vulnerabilities make up 15% of
the vulnerabilities with high severity
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Buffer overflows: what?

» Write beyond the bounds of an array
» Overwrite information stored behind the array

» Arrays can be accessed through an index or
through a pointer to the array

» Both can cause an overflow

» Java: not vulnerable because it has no pointer
arithmetic and does bounds checking on array
indexing
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Buffer overflows: how?

» How do buffer overflows occur?
» By using an unsafe copying function (e.g. strcpy)

» By looping over an array using an index which may be
too high

» Through integer errors

» How can they be prevented?

» Using copy functions which allow the programmer to
specify the maximum size to copy (e.g. strncpy)

» Checking index values
. Better checks on integers

March 6th, 2008
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Buffer overflows: example

void function(char *Iinput) {
char str[80];
strcpy(str, input);

}

Int main(int argc, char **argv) {
function(argv|[l));

}

N
St
% 3%

. N
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Shellcode

» Small program in machine code representation

» Injected into the address space of the process
> Int main() {

printf("You win\n");
exit(0)

static char shellcode[] =
"\x6a\x09\x83\x04\x24\x01\x68\x7 7"
"\X69\x6e\x21\x68\x79\x6f\x75\x20"
"\X31\xdb\xb3\x01\x89\xe1\x31\xd2"
"\Xb2\x09\x31\xcO0\xh0\x04\xcd\x80"
"\x32\xdb\xb0\x01\xcd\x80":

VVVVVVVYVYYVY

Lo

g B
-J'.‘g! ;
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| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (&)
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Stack-based buffer overflows

» Stack is used at run time to manage the use of
functions:

» For every function call, a new record is created

= (Contains return address: where execution should resume
when the function is done

= Arguments passed to the function
= [ocal variables

> |f an attacker can overflow a local variable he can
find interesting locations nearby

Lo

g B
-J'.‘g! ;
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Stack-based buffer overflows

» Old unix login vulnerability

> Int login() {

= char user[8], hash[8], pw[8];

= printf("login:"); gets(user);
* lookup(user,hash);
= printf("password:"); gets(pw);
= if (equal(hash, hashpw(pw)))
= return OK,
= else
= return INVALID;

b ®
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Stack-based buffer overflows

Other stack frames

login:
IP :
sl char user[8], hash[8], pw[8]; | FP Return address login
printf(“username:”); === Saved frame pointer login
gets(user); user
lookup(user,hash);
printf(“password:”);
gets(pw); —
If (equal(hash,hashpw(pw)))
return OK; SP pW
else — >
return INVALID:;
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Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
P printf(“fusername:”);
* gets(user);
lookup(user,hash);
printf(“password:”);
gets(pw);
If (equal(hash,hashpw(pw)))
return OK;
else

return INVALID:;

Yves Younan

FP
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Other stack frames

Return address login

Saved frame pointer login

user

hash

pw
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Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);

P gets(user);

* lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP
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Other stack frames

Return address login

Saved frame pointer login

user

hash

pw
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Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);

P gets(user);

* lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP
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Other stack frames

Return address login

Saved frame pointer login

user

hash

pw
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Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);
gets(user);
lookup(user,hash);

P printf(“password:”);

ml=- gets(pw);

If (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash
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Stack-based buffer overflows

» Attacker can specify a password longer than 8
characters

» Will overwrite the hashed password

> Attacker enters:
> AAAAAAAABBBBBBBB
» \Where BBBBBBBB = hashpw(AAAAAAAA)

» Login to any user account without knowing the
password

 Called a non-control data attack

3 g
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Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);
gets(user);
lookup(user,hash);

P printf(“password:”);

ml=- gets(pw);

If (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user
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Stack-based buffer overflows

tac

f0: Other stack frames

— = ep Return address fO

call f1 Saved frame pointer fO

v

Local variables fO
SP

Y

f1:

buffer(]
overflow()
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Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO

IP* call f1 ::> Saved frame pointer fO

Local variables fO

L Arguments f1

buffer(] .

overflow()
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Stack-based buffer overflows

fO:

call f1

f1:

buffer(]
overflow()

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO

Arguments f1

FP

::>

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Return address f1

Saved frame pointer f1
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Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

f1:
P buffer(]
mml> | Overflow() =5

Arguments f1

SP )
— =
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Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

SP

f1:

buffer(]
overflow()
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Stack-based buffer overflows

> Exercises

» From Gera’s insecure programming page
= http://community.corest.com/~gera/lnsecureProgram
ming/
» For the following programs:
= Assume Linux on Intel 32-bit
= Draw the stack layout right after gets() has executed

= Give the input which will make the program print out “you
win!”

""z
5
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Stack-based buffer overflows

» Int main() {
» Int cookie;
»  char buf[80];

»>  printf("b: %x c: %x\n", &buf, &cookie);
»  gets(buf);

»  If (cookie == 0x41424344)
> printf("you win\n");

"%

Yves ounan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 34/ 127 %a ;



s Dlsanef .

rch Group

Stack-based buffer overflows

Stack

Return address

FP _
= > Frame pointer
cookie
|P
* buf

SP

Y

""z
ol
'.: &
i s
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Stack-based buffer overflows

Stack
main: £p Return address
cookie = > Frame pointer
buf[80]
printf()
P gets()

» perl -e 'print "A"x80; print "DCBA" | ./s1

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 36 /127 %;1;&5



» DistriNet -

esearch Group

Stack-based buffer overflows

» Int main() {
» Int cookie;
»  char buf[80];

»>  printf("b: %x c: %x\n", &buf, &cookie);
»  gets(buf);

>}

N
£y
{:

£ §

» buf Is at location Oxbffffce4 In memory

S, N
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Stack-based buffer overflows

Stack
main: . Fp Return address
COOKIE ::> Frame pointer
buf[80] cookie
= printf()
== |  gets() buf

""z
o
'.: &
i s
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Stack-based buffer overflows

> H#Hdefine RET Oxbffffced4

»Int main() {
char buf[93];
Int ret;
memset(buf, '\x90', 92);
memcpy(buf, shellcode, strlen(shellcode));
*(long *)&buf[88] = RET,
buf[92] = 0O;
printf(buf);

VVVVVVYVYY

&)
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Stack-based buffer overflows

) Stack
main:
cookie FP
buf[80] ":
printf()
IP gets()
* Oxbffffce4

Fa
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Finding inserted code

» Generally (on kernels < 2.6) the stack will start at a static
address

» Finding shell code means running the program with a
fixed set of arguments/fixed environment

> This will result in the same address

» Not very precise, small change can result in different
location of code

» Not mandatory to put shellcode in buffer used to overflow
» Pass as environment variable

+,
f"%
)
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Controlling the environment

Stack start: High addr
Passing shellcode as OXBFFFFFFF 0,0,0,0
environment variable: Program name
Stack start - 4 null bytes Env var n
- strlen(program name) - Env var n-1
- null byte (program name)
- strlen(shellcode) Env var O
Argn

OXBFFFFFFF - 4 A 1

- strlen(program name) - 9N

-1

- strlen(shellcode) Arg 0 Low addr

%
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| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (&)
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Indirect Pointer Overwriting

» Overwrite a target memory location by overwriting
a data pointer

» An attackers makes the data pointer point to the target
location

» When the pointer is dereferenced for writing, the target
location is overwritten

> |f the attacker can specify the value of to write, he can
overwrite arbitrary memory locations with arbitrary
values

+,
f"%
)
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Indirect Pointer Overwriting

fO:
FP

v

call f1

SP

Y

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

data I

C and C++: vulnerabilities, exploits and countermeasures

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO
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Indirect Pointer Overwriting

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

IP
. f1: Arguments f1
ptr = &data;
buffer(] £p Return address f1
overflow(); ::> Saved frame pointer f1

*ptr = value; Pointer

data Ii SP*

Yves Younan C and C++: vulnerabilities, exploits and countermeasures
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Indirect Pointer Overwriting

fO:

call f1

f1:
ptr = &data;
buffer(]

mel> | overflow();

*ptr = value;

Yves Younan

data I

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO

Arguments f1

FP

Return address f1

V]

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Saved frame pointer f1
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Indirect Pointer Overwriting

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

f1: Arguments f1
ptr = &data;
buffer(] £p —
P overflow(); ::> Saved frame pointer f1

sl | *ptr = value;
SP ”
data I *

Yves Younan C and C++: vulnerabilities, exploits and countermeasures
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Indirect Pointer Overwriting

tac
0: Other stack frames
£p Return address fO
call f1 == >>| Saved frame pointer O

Local variables fO
SP

Y

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

data I

Yves Younan C and C++: vulnerabilities, exploits and countermeasures




» DistriNet -

esearch Group

Indirect Pointer Overwriting

»static unsigned int a = 0O;

»Int main(int argc, char **argv) {
> Int *b = &a;

> char buf[80];

> printf("buf: %08x\n", &buf);
> gets(buf);

> *b = strtoul(argv[1], O, 16);
¢ )

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 50 /127 &‘*
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Indirect Pointer Overwriting

main:
b = &a;
o buf[80] Stack
== | gets(); Return address

FP

*b = argv[1];

v

Saved frame pointer
b

buf

'
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Indirect Pointer Overwriting

»#define RET Oxbffff9e4+88

»Iint main() {

char buf[84];

Int ret;

memset(buf, \x90', 84);

memcpy(buf, shellcode, strlen(shellcode));
*(long *)&buffer[80] = RET;

printf(buffer);

V.V V V VYV VY

>}

§ 3, *“*
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Indirect Pointer Overwriting

main:
b=&a;
buf[80]

gets();

di *b = argv[l];

Stack

FP

Return address

Yves Younan C and C++: vulnerabilities, exploits and countermeasures
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Indirect Pointer Overwriting

main:
b=&a;
buf[80]

gets();
*b = argv[l];

Stack

P Saved frame pointer
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| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
= Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (&)
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Heap-based buffer overflows

» Heap contains dynamically allocated memory

» Managed via malloc() and free() functions of the
memory allocation library

» A part of heap memory that has been processed by
malloc is called a chunk

» No return addresses: attackers must overwrite data
pointers or function pointers

» Most memory allocators save their memory
management information in-band

. . . ‘Q%‘@a
» Overflows can overwrite management information )
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Heap management in dimalloc

» Used chunk

Chunk1

Size of prev. chunk
Size of chunkl

User data

""z
o
'.: &
i s
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Heap management in dimalloc

» Free chunk: doubly linked list of free chunks

Chunk1

Size of prev. chunk
Size of chunkl
Forward pointer

Backward pointer

Old user data

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 58 / 127
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Heap management in dimalloc

» Removing a chunk from the doubly linked list of

free chunks:
#define unlink(P, BK, FD) {

BK = P->bk;
FD = P->fd:
FD->bk = BK;
BK->fd = FD; }
> TNIS IS 1 fd->bk = P->bk
P->bk->fd = P->fd

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008
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Heap management in dimalloc

Chunkl Chunk2 Chunk3
Size of prev. chunk Size of prev. chunk ) T Size of prev. chunk
Size of chunkl Size of chunk2 Size of chunk3
Forward pointer Forward pointer Forward pointer
Backward pointer Backward pointer Backward pointer
Old user data Old user data Old user data

Lo
-J'.‘g! ;
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Heap management in dimalloc

Chunk1

Size of prev. chunk

Chunk3

Size of chunkl

Size of prev. chunk

Forward pointer

Size of chunk3

Backward pointer

Forward pointer

Old user data

Backward pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Old user data
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Heap management in dimalloc

Chunk1

Size of prev. chunk

Chunk3

Size of chunkl

Size of prev. chunk

Forward pointer

Size of chunk3

Backward pointer

Forward pointer

Old user data

Backward pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures
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Heap management in dimalloc

Chunk1

Size of prev. chunk

Chunk3

Size of chunkl

Size of prev. chunk

Forward pointer

Size of chunk3

Backward pointer

Forward pointer

Old user data

Backward pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Old user data
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Heap-based buffer overflows

Chunk1
Size of prev. chunk
Size of chunkl
User data
Chunk?2

Size of chunkl
Size of chunk?2
Forward pointer
Backward pointer

Old user data

&
£
{:

3 Nl T
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Heap-based buffer overflows

Chunk1

Size of prev. chunk
Size of chunkl

— Return address

Chunk?2

call f1

Old user data

&)
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Heap-based buffer overflows

Chunk1l > After unlink

Size of prev. chunk
Size of chunkl

_

Chunk?2

call f1

Old user data

&)
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Dangling pointer references

» Pointers to memory that is no longer allocated
» Dereferencing is unchecked in C
» Generally leads to crashes

» Can be used for code injection attacks when
memory is deallocated twice (double free)

» Double frees can be used to change the memory
management information of a chunk

S,
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Double free

Chunk?2 Chunk3
Size of prev. chunk ) T'Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data
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Double free

Chunk?2 Chunk3
Size of prev. chunk ) T'Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008



» DistriNet -

Research Group

Double free

Chunk?2 Chunk2 Chunk3
Size of prev. chunk Size of prev. chunk ) T Size of prev. chunk
Size of chunk2 Size of chunk2 Size of chunk3
Forward pointer Forward pointer Forward pointer
Backward pointer Backward pointer Backward pointer
Old user data Old user data Old user data

R
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Research Group

Double free

Chunk?2 Chunk3
= Size of prev. chunk ) Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data
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rch Group

Double free

» Unlink: chunk stays linked because it points to

itself
Chunk?2

1 Size of prev. chunk
Size of chunk?2
Forward pointer

Backward pointer

Old user data
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Double free

> |f unlinked to reallocate: attackers can now write to

the user data part
Chunk?2

1 Size of prev. chunk
Size of chunk?2

wg:%ﬁ
e
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Double free

> |t Is still linked In the list too, so it can be unlinked
again
Chunk?2

Size of prev. chunk > Return address
Size of chunk2

call f1
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Double free

» After second unlink

Chunk?2

Size of chunk2

call f1
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| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (&)
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-+ DishriNet -

Overflows in the data/bss

segments

» Data segment contains global or static compile-
time initialized data

» Bss contains global or static uninitialized data

» Overflows in these segments can overwrite:

» Function and data pointers stored in the same
segment

» Data in other segments

o,
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Overflows in the data/bss

segments

» ctors: pointers to functions to —
execute at program start Ctors
» dtors: pointers to functions to Dtors
execute at program finish o

» GOT: global offset table: used
T : BSS

for dynamic linking: pointers to

absolute addresses

Heap
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Overflow in the data segment

»char buf[256]={1};

»Int main(int argc,char **argv) {
»  strepy(buf,argv[l));
>}

2o
g B
-J'.‘g! ;
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Overflow in the data segment

Data buf[256]
Ctors
Dtors 0x00000000
GOT
BSS
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Overflow In the data section

» Int main (int argc, char **argv) {

» char buffer[476];

» char *execargv[3] ={ "./abo7", buffer, NULL };

» char *env[2] = { shellcode, NULL };

> Int ret;

> re}‘|e|| %F)FFFFFF 4 - strlen (execargv|0]) - 1 - strlen

> memset(buffer "x90', 476),

» *(long *)&buffer[472] = ret;

> }execve(execargv[O],execargv,env);
>

""z
5
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Overflow in the data segment

Data
Ctors
Dtors
GOT
BSS
5@’%
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rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion

&)
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Format string vu

EElES

» Format strings are used to specify formatting of

output:

> printf(“%d is %s\n”, integer, string); -> “5 is

five”
» Variable number of arguments
» Expects arguments on the stac
» Problem when attack controls t
» printf(input);
> should be prlntf(“%s” mput)

Yves C and C++: vulnerabilities, exploits and counter:

K

ne format string:
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Format string vulnerabilities

tac
» Can be used to read Other stack frames
arbitrary values from R adiees (0
Saved frame pointer fO
the StaCk Local vgriable fO
> “OA)S OA)X %Xu string
, , Arguments printf:
» Will read 1 string and format string
2 integers from the - Return address pri.ntf
stack 5 i Saved frame ptr printf
SP

&
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» DistriNet -

esearch Group

Format string vulnerabilities

tac
» Can be used to read Other stack frames
arbitrary values from Return address fO
Saved frame pointer fO
the StaCk Local vqriable fO
> “OA)S OA)X %Xu string
, , Arguments printf:
» Will read 1 string and format string
2 integers from the - Return address pri.ntf
stack 5 i Saved frame ptr printf
SP

&

g B
%&'5
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Format string vulnerabilities

» Format strings can also write data:

» %n will write the amount of (normally) printed
characters to a pointer to an integer

> “%200x%n” will write 200 to an integer

» Using %n, an attacker can overwrite arbitrary
memory locations:

» The pointer to the target location can be placed some
where on the stack

» Pop locations with “%x” until the location is reached j
yes Yﬁnwrite toCLh@f JJQegﬁuQ&nﬂ!itnm;rﬁZQuQ” March 6th, 2008 g7 /127 fi




> Dlsanef s

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities

» Integer errors
= |nteger overflows
= |nteger signedness errors

» Countermeasures
. (&)
%s @@ n Cl u S I md C++: vulnerabilities, exploits and countermeasures March 6th, 2008 gg /127 %a




» DistriNet -

esearch Group

Integer overflows

» Integer wraps around 0

» Can cause buffer overflows
Int main(int argc, char **argv) {
unsigned int a;
char *buf;
a = atol(argv[1]);
buf = (char*) malloc(a+1);

}

» malloc(0) -> will malloc only 8 bytes

3
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rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities

» Integer errors
= Integer overflows
= |nteger signedness errors

» Countermeasures
. (&)
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Integer signedness errors

» Value interpreted as both signed and unsigned
Int main(int argc, char **argv) {

INt a;
char buf[100];
a = atol(argv[1]);
if (a < 100)
strncpy(buf, argv[2], a); }

» For a negative a:
> In the condition, a is smaller than 100
» Strncpy expects an unsigned integer: ais now a large

N
M Y

i H
2 5
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| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion
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Safe languages

» Change the language so that correctness can be
ensured
» Static analysis to prove safety

> If it can’t be proven safe statically, add runtime checks
to ensure safety (e.g. array unsafe statically -> add
bounds checking)

» Type safety: casts of pointers are limited
» Less programmer pointer control
» Runtime type-information

o,
f"%
)
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» DistriNet -

esearch Group

Safe languages

» Memory management: no explicit management
= (Garbage collection: automatic scheduled deallocation

= Region-based memory management: deallocate regions as
a whole, pointers can only be dereferenced if region is live

» Focus on languages that stay close to C

oS

g B
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esearch Group

Safe languages

» Cyclone: Jim et al.

» Pointers:
= NULL check before dereference of pointers (*ptr)
= New type of pointer: never-NULL (@ptr)
= No artihmetic on normal (*) & never-NULL (@) pointers

= Arithmetic allowed on special pointer type (?ptr): contains
extra bounds information for bounds check

= Uninitialized pointers can't be used
» Region-based memory management

» Tagged unions: functions can determine type of -~
weanm@lgUMeERts:. prevents.format.string vulnerahilities. 0 ¥




» DistriNet -

esearch Group

Safe languages

» CCured: Necula et al.

» Stays as close to C as possible

» Programmer has less control over pointers: static
analysis determines pointer type
= Safe: no casts or arithmetic; only needs NULL check
= Sequenced: only arithmetic; NULL and bounds check
= Dynamic: type can't be determined statically; NULL,
bounds and run-time type check

» Garbage collection: free() is ignored

oS

g B
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| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion
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Probabilistic countermeasures

» Based on randomness

» Canary-based approach
» Place random number in memory
» Check random number before performing action
» |f random number changed an overflow has occurred

» Obfuscation of memory addresses
» Address Space Layout Randomization
» Instruction Set Randomization
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Canary-based countermeasures

» StackGuard (SG): Cowan et al.

» Places random number before the return address
when entering function

» Verifies that the random number is unchanged when
returning from the function

» |f changed, an overflow has occurred, terminate
program

o,
f"%
)
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StackGuard (SG)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Canary

Local variables fO

IP
fl: Arguments f1
ptr = &data;
buffer(] £p Return address f1
overflow(); ::> Saved frame pointer f1

*ptr = value; Canary
Pointer

data I— Sp Buffer
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StackGuard (SG)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
Canary

Local variables fO

f1:
ptr = &data; Arguments f1
buffer(]
IP FP
* overflow(); ::>

*ptr = value;

data I— <p_ A
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esearch Group

Canary-based countermeasures

» Propolice (PP): Etoh & Yoda

» Same principle as StackGuard

» Protects against indirect pointer overwriting by
reorganizing the stack frame:

= All arrays are stored before all other data on the stack (i.e.
right next to the random value)

= Qverflows will cause arrays to overwrite other arrays or the
random value

» Part of GCC >=4.1
»> ‘Stack Cookies in Visual Studio A

7 &
3 Nl T
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 102/ 127 %11:&5




» DistriNet -

Research Group

Propolice (PP)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Canary

Local variables fO

e | f1:
= ke Arguments f1
buffer(] £p Return address f1
overflow(); ::> Saved frame pointer f1

*ptr = value; Canary

Buffer

dat_al\—f LSPWI— Pointer
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Propolice (PP)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Canary

Local variables fO

P
B 1. A ts f1
rfgumen
ptr = &data,; J
buffer(] £p
overflow(); e
*ptr = value;
data Sp . i
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» DistriNet -

rch Group

Heap protector (HP)

Chunk1 | » Heap protector: Robertson
Size of prev. chunk
Size of chunkl et al-
SNEE ST > Adds checksum to the chunk
information
User data . :
» Checksum is XORed with a
Chunkz S G global random value
Size of chunk2 » On allocation checksum is
Checksum
Forward pointer added
Backward pointer 3> On free (or other operations)
Old user data checksum Is calculated, .

51%
;;
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esearch Group

Contrapolice (CP)

Chunk1 Canaryl . .
Size of prev. chunk | » Contrapolice: Krennmair

Size of chunkl » Stores a random value before

User data and after the chunk
e » Before exiting from a string
Chunk?2 Canary2 copy operation, the random
Size of chunkl value before is compared to the

Size of chunk2 random value after
Forward pointer

Backward pointer | > |f they are not the same, an
Old user data overflow has occured

Canary2
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Problems with canaries

» Random value can leak
» For SG: Indirect Pointer Overwriting

» For PP: overflow from one array to the other (e.g.
array of char overwrites array of pointer)

» For HP, SG, PP: 1 global random value
» CP: different random number per chunk
» CP: no protection against overflow in loops
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Probabilistic countermeasures

» Obfuscation of memory addresses
» Also based on random numbers

» Numbers used to ‘encrypt’ memory locations

» Usually XOR
= 39 XORb=c
= cXORb=a

""z
5
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Obfuscation of memory addresses

» PointGuard: Cowan et al.

» Protects all pointers by encrypting them (XOR) with a
random value

Decryption key is stored in a register

Pointer is decrypted when loaded into a register
Pointer is encrypted when loaded into memory
-orces the compiler to do all memory access via

>&ea%l%%rgypassed if the key or a pointer leaks
» Randomness can be lowered by using partial overwrite

V V V V
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Partial overwrite

» XOR:
» 0x41424344 XOR 0x20304050 = 0x61720314
» However, XOR ‘encrypts’ bitwise
» 0x44 XOR 0x50 = 0x14
» It injected code relatively close:
» 1 byte: 256 possibilities
» 2 bytes: 65536 possibilities

N
St
% 3%

. N
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Yves Younan

fO:

call f1

Partial overwrite

&
<

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

tac

Other stack frames

Return address fO

Saved frame pointer fO

FP

::>

Data

Other Local variables fO

Arguments f1

Return address f1

Saved frame pointer f1

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Encrypted pointer

Buffer




Research Group

Partial overwrite

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Data

Other Local variables fO

f1: Arguments f1
ptr = &data;
buffer(] > Return address f1
IP FP :
* overflow(); ::> Saved frame pointer f1
*ptr = value;

SP

*
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fO:

call f1

f1:

ptr = &data;
= buffer(]
meml=| overflow();
*ptr = value;

Partial overwrite

tac

Other stack frames

Return address fO

Saved frame pointer fO

Data

Other Local variables fO

FP

:

Arguments f1

Saved frame pointer f1

SP

:
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-+ DishriNet -

Probabilistic countermeasures

» Address space layout randomization: PaX team
» Compiler must generate PIC

» Randomizes the base addresses of the stack, heap,
code and shared memory segments

» Makes it harder for an attacker to know where in
memory his code is located

» Can be bypassed if attackers can print out memory
addresses: possible to derive base address

» Implemented in Windows Vista / Linux >=2.6.12

S,
g B
%&'5
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Probabilistic countermeasures

» Randomized instruction sets: Barrantes et al./Kc et
al.
» Encrypts instructions while they are in memory
» Decrypts them when needed for execution

> |f attackers don'’t know the key their code will be
decrypted wrongly, causing invalid code execution

» |f attackers can guess the key, the protection can be
bypassed

» High performance overhead in prototypes: should be
Yves Younan I m p | e m % !H ngd vu’nl;]rabmieas, L')gm\{\s/ a%ircgntermeasures March 6th, 2008 115/ 127 %&’s‘g
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Probabilistic countermeasures

» Rely on keeping memory secret

» Programs that have buffer overflows could also
have information leakage

» Example:
» char buffer[100];
» strncpy(buffer, input, 100);
» Printf(“%s”, buffer);

»> Strncpy does not NULL terminate (unlike strcpy),
prmtf keeps readmg unt|I a NULL is found (B
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| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion
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Separation and replication of

iInformation

» Replicate valuable control-flow information
» Copy control-flow information to other memory
» Copy back or compare before using

» Separate control-flow information from other data

» Write control-flow information to other places in
memory

» Prevents overflows from overwriting control flow
Information

» These approaches do not rely on randomness A\

% gNE ¢
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Separation of information

» Dnmalloc: Younan et al.
» Does not rely on random numbers

» Protection is added by separating the chunk
Information from the chunk

» Chunk information is stored in separate regions
protected by guard pages

» Chunk is linked to its information through a hash table
» Fast: performance impact vs. dimalloc: -10% to +5%

» Used as the default allocator for Samhein (open
Yves Younan Sou rce |Q1§)+ vulnerabilities, exploits and countermeasures March 6th, 2008 119/ 127 %5
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Dnmalloc

Low addresses Hashtable
Guard page
Ptr to chunkinfo
Ptr to chunkinfo

Heap Data

Heap Data

Ptr to chunkinfo
Ptr to chunkinfo
Ptr to chunkinfo

Heap Data

Heap Data

Chunkinfo region
Guard page
Management information

Management information
Management information

Heap Data

Heap Data

Heap Data
Management information

Heap Data Management information

High addresses
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Separation of information

» Dnstack (temporary name): Younan et al.
» Does not rely on random numbers

» Separates the stack into multiple stacks, 2 criteria:
= Risk of data being an attack target (target value)

= Risk of data being used as an attack vector (source value)
* Return addres: target: High; source: Low
* Arrays of characters: target: Low; source: High

» Default: 5 stacks, separated by guard pages

= Stacks can be reduced by using selective bounds
checking: to reduce source risk: ideally 2 stacks

» Fast: max. performance overhead: 2-3% (usuall

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 20 ) 121/ 127
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"Dnstack’

Structs (no Structures
Array of char array) (with char.

Pointers pointers Array of struct array)
(no char

array) Array of

Arrays structures

(with char
array)

Array of

Structures (no characters

Saved arrays)
registers Alloca()

Integers Floats

Guard page Guard page Guard page Guard page Guard page

> Stacks are at a fixed location from each other

> |f source risk can be reduced: maybe only 2 stacks
» Map stack 1,2 onto stack one |
> Map stack 3,4.5 onto stack two t)
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| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion
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Paging-based countermeasures

» Non-executable stack: Solar Designer
» Makes stack segment non-executable
» Prevents exploits from storing code on the stack
» Code can still be stored on the heap

» Can be bypassed using a return-into-libc attack

= make the return address point to existing function (e.g.
system) and use the overflow to put arguments on the
stack

» Some programs need an executable stack

» Non-executable stack/heap: PaX team

5 %
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| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion
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Hardened libraries

» FormatGuard: Cowan et al.

» Most format string attacks have more specifiers in the
string than arguments

» Counts the arguments the format string expects and
compares them to the nr of arguments passed

= |f more: format string -> program is terminated

» Libformat: Robbins

» Checks format string: if located in writable memory
and contains %n -> terminate program

» Vlisual Studio: removes %n ()
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| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion
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Embedded and mobile devices

» Vulnerabilities also present and exploitable on
embedded devices

» IPhone LibTIFF vulnerability massively exploited
by to unlock phones

» Almost no countermeasures
> Windows CEb6 has stack cookies

» Different priorities: performance is much more
Important on embedded devices

> Area of future research 5
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Conclusion

» Many attacks, countermeasures, counter-
countermeasures, etc. exist

» Search for good and performant countermeasures to
protect C continues

» Best solution: switch to a safe language, if possible

» More information:

» Y. Younan, W. Joosen and F. Piessens. Code injection in C and C++:
A survey of vulnerabilities and Countermeasures

» Y. Younan. Efficient countermeasures for software vulnerabilities due
to memory management errors 7\
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