» DistriNet -

esearch Group

C and C++: vulnerabllities, exploits

and countermeasures

Yves Younan
DistriNet, Department of Computer Science
Katholieke Universiteit Leuven
Belgium
Yves.Younan@cs.kuleuven.ac.be

mailto:Yves.Younan@cs.kuleuven.ac.be

» DistriNet -

esearch Group

Introduction

» C/C++ programs: some vulnerabilities exist which
could allow code injection attacks

» Code injection attacks allow an attacker to execute

L

foreign code with the privileges of the vulnerable
program

» Major problem for programs written in C/C++

» Focus will be on:
> lllustration of code injection attacks
» Countermeasures for these attacks

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

" DistriNlet " »

esearch Group

| ecture overview

» Memory management in C/C++
» \ulnerabilities

» Countermeasures

» Conclusion

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

» DistriNet -

esearch Group

Memory management in C/C++

» Memory is allocated in multiple ways in C/C++:
» Automatic (local variables in a function)
» Static (global variables)
» Dynamic (malloc or new)

» Programmer is responsible for

» Correct allocation and dealocation in the case of

dynamic memory
» Appropriate use of the allocated memory
= Bounds checks, type checks A\

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 4 1127 %@;s‘;

-+ DishriNet -

Memory management in C/C++

» Memory management is very error prone

» Typical bugs:
» \Writing past the bounds of the allocated memory
» Dangling pointers: pointers to deallocated memory
» Double frees: deallocating memory twice
» Memory leaks: never deallocating memory

» For efficiency reasons, C/C++ compilers don't
detect these bugs at run-time:

» C standard states behavior of such programs is P
Yves Younan U ndefl nedi C++: vulnerabilities, exploits and countermeasures March 6th, 2008 5 /127 %’s‘;

- Dighilel -

esearch Group

Process memory layout

Arguments/Environment

Stack

Unused and
Shared Memory

Heap

Static & Global Data

Program code

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

- Dighilel -

esearch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

-+ DishriNet -

Code injection attacks

» To exploit a vulnerability and execute a code
Injection attack, an attacker must:

» Find a bug that can allow an attacker to overwrite
Interesting memory locations

» Find such an interesting memory location
» Copy target code in binary form into the memory of a
program
= Can be done easily, by giving it as input to the program

» Use the vulnerability to modify the location so that the
program will execute the injected code A\

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 g 1127 %@;s‘;

-+ DishriNet -

Interesting memory locations

for attackers

» Stored code addresses: modified -> code can be
executed when the program loads them into the IP

» Return address: address where the execution must
resume when a function ends

» Global Offset Table; addresses here are used to
execute dynamically loaded functions

» Virtual function table: addresses are used to know
which method to execute (dynamic binding in C++)

» Dtors functions: called when programs exit

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

-+ DishriNet -

Interesting memory locations

» Function pointers: modified -> when called, the
Injected code is executed

» Data pointers: modified -> indirect pointer
overwrites

» First the pointer is made to point to an interesting
ocation, when it is dereferenced for writing the
ocation is overwritten

» Attackers can overwrite many locations to perform
an attack

o,
f"%
)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 10 1127 %@;s‘;

- Dighilel -

esearch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

\ pf\l |n-|-nv~m ﬂﬂﬂﬂﬂﬂﬂﬂ

+ DighriNet -

Buffer overflows: impact

» Code red worm: estimated loss world-wide: $ 2.62
billion
» Sasser worm: shut down X-ray machines at a

swedish hospital and caused Delta airlines to
cancel several transatlantic flights

» Zotob worm: crashed the DHS' US-VISIT program
computers, causing long lines at major
International airports

>AII three worms used stack based buffer overflows &\

3 3
Yves You C and C++: vulnerabilities, exploits and counter March 6th, 2008 19 1127 W

-+ DishriNet -

Buffer overflows: numbers

» NIST national vulnerability database (jan-oct
2008).

» 486 buffer overflow vulnerabilities (10% of total
vulnerabilities reported)

» 347 of these have a high severity rating

» These buffer overflow vulnerabilities make up 15% of
the vulnerabilities with high severity

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

+ Distrilet -
Buffer overflows: what?

» Write beyond the bounds of an array
» Overwrite information stored behind the array

» Arrays can be accessed through an index or
through a pointer to the array

» Both can cause an overflow

» Java: not vulnerable because it has no pointer
arithmetic and does bounds checking on array
indexing

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

-+ DishriNet -

Buffer overflows: how?

» How do buffer overflows occur?
» By using an unsafe copying function (e.g. strcpy)

» By looping over an array using an index which may be
too high

» Through integer errors

» How can they be prevented?

» Using copy functions which allow the programmer to
specify the maximum size to copy (e.g. strncpy)

» Checking index values
. Better checks on integers

March 6th, 2008

- Distrilet -

Buffer overflows: example

void function(char *Iinput) {
char str[80];
strcpy(str, input);

}

Int main(int argc, char **argv) {
function(argv|[l));

}

N
St
% 3%

. N
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 16 1127 %11:&5

» DistriNet -

esearch Group

Shellcode

» Small program in machine code representation

» Injected into the address space of the process
> Int main() {

printf("You win\n");
exit(0)

static char shellcode[] =
"\x6a\x09\x83\x04\x24\x01\x68\x7 7"
"\X69\x6e\x21\x68\x79\x6f\x75\x20"
"\X31\xdb\xb3\x01\x89\xe1\x31\xd2"
"\Xb2\x09\x31\xcO0\xh0\x04\xcd\x80"
"\x32\xdb\xb0\x01\xcd\x80":

VVVVVVVYVYYVY

Lo

g B
-J'.‘g! ;
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 17 1127 6%

> Dlsanef s

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 18 1127 %a

\ pf\l |n-|-nv~m ﬂﬂﬂﬂﬂﬂﬂﬂ

» DistriNet -

esearch Group

Stack-based buffer overflows

» Stack is used at run time to manage the use of
functions:

» For every function call, a new record is created

= (Contains return address: where execution should resume
when the function is done

= Arguments passed to the function
= [ocal variables

> |f an attacker can overflow a local variable he can
find interesting locations nearby

Lo

g B
-J'.‘g! ;
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 19 /127 *42%

. Dlsanef .

rch Group

Stack-based buffer overflows

» Old unix login vulnerability

> Int login() {

= char user[8], hash[8], pw[8];

= printf("login:"); gets(user);
* lookup(user,hash);
= printf("password:"); gets(pw);
= if (equal(hash, hashpw(pw)))
= return OK,
= else
= return INVALID;

b ®
Yves Ydunan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 o0 /127 %a

» DistriNet -

esearch Group

Stack-based buffer overflows

Other stack frames

login:
IP :
sl char user[8], hash[8], pw[8]; | FP Return address login
printf(“username:”); === Saved frame pointer login
gets(user); user
lookup(user,hash);
printf(“password:”);
gets(pw); —
If (equal(hash,hashpw(pw)))
return OK; SP pW
else — >
return INVALID:;

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

» DistriNet -

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
P printf(“fusername:”);
* gets(user);
lookup(user,hash);
printf(“password:”);
gets(pw);
If (equal(hash,hashpw(pw)))
return OK;
else

return INVALID:;

Yves Younan

FP

C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash

pw

» DistriNet -

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);

P gets(user);

* lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash

pw

» DistriNet -

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);

P gets(user);

* lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash

pw

» DistriNet -

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);
gets(user);
lookup(user,hash);

P printf(“password:”);

ml=- gets(pw);

If (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash

-+ DishriNet -

Stack-based buffer overflows

» Attacker can specify a password longer than 8
characters

» Will overwrite the hashed password

> Attacker enters:
> AAAAAAAABBBBBBBB
» \Where BBBBBBBB = hashpw(AAAAAAAA)

» Login to any user account without knowing the
password

 Called a non-control data attack

3 g
March 6th, 2008 o 127 s

" DistriNlet " »

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);
gets(user);
lookup(user,hash);

P printf(“password:”);

ml=- gets(pw);

If (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

» DistriNet -

esearch Group

Stack-based buffer overflows

tac

f0: Other stack frames

— = ep Return address fO

call f1 Saved frame pointer fO

v

Local variables fO
SP

Y

f1:

buffer(]
overflow()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

» DistriNet -

esearch Group

Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO

IP* call f1 ::> Saved frame pointer fO

Local variables fO

L Arguments f1

buffer(] .

overflow()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Y
s Di
R

strilet '

esearch Group

IP

Yves Younan

Stack-based buffer overflows

fO:

call f1

f1:

buffer(]
overflow()

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO

Arguments f1

FP

::>

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Return address f1

Saved frame pointer f1

R ey an
' DistriNet -
R

esearch Group

Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

f1:
P buffer(]
mml> | Overflow() =5

Arguments f1

SP)
— =

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

" DistriNlet " »

esearch Group

Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

SP

f1:

buffer(]
overflow()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

s Dlsanef s

rch Group

Stack-based buffer overflows

> Exercises

» From Gera’s insecure programming page
= http://community.corest.com/~gera/lnsecureProgram
ming/
» For the following programs:
= Assume Linux on Intel 32-bit
= Draw the stack layout right after gets() has executed

= Give the input which will make the program print out “you
win!”

""z
5

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 33 1127 %a 2

http://community.corest.com/~gera/InsecureProgramming/
http://community.corest.com/~gera/InsecureProgramming/

. Dlsanef .

rch Group

Stack-based buffer overflows

» Int main() {
» Int cookie;
» char buf[80];

»> printf("b: %x c: %x\n", &buf, &cookie);
» gets(buf);

» If (cookie == 0x41424344)
> printf("you win\n");

"%

Yves ounan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 34/ 127 %a ;

s Dlsanef .

rch Group

Stack-based buffer overflows

Stack

Return address

FP _
= > Frame pointer
cookie
|P
* buf

SP

Y

""z
ol
'.: &
i s

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 35 / 127 %a 2

Stack-based buffer overflows

Stack
main: £p Return address
cookie = > Frame pointer
buf[80]
printf()
P gets()

» perl -e 'print "A"x80; print "DCBA" | ./s1

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 36 /127 %;1;&5

» DistriNet -

esearch Group

Stack-based buffer overflows

» Int main() {
» Int cookie;
» char buf[80];

»> printf("b: %x c: %x\n", &buf, &cookie);
» gets(buf);

>}

N
£y
{:

£ §

» buf Is at location Oxbffffce4 In memory

S, N
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 37 1127 %11:&5

. Dlsanef .

rch Group

Stack-based buffer overflows

Stack
main: . Fp Return address
COOKIE ::> Frame pointer
buf[80] cookie
= printf()
== | gets() buf

""z
o
'.: &
i s

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 38 / 127 %a 2

. Dlsanef .

rch Group

Stack-based buffer overflows

> H#Hdefine RET Oxbffffced4

»Int main() {
char buf[93];
Int ret;
memset(buf, '\x90', 92);
memcpy(buf, shellcode, strlen(shellcode));
*(long *)&buf[88] = RET,
buf[92] = 0O;
printf(buf);

VVVVVVYVYY

&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 39 /127 %a

- Dighitet -

esearch

Stack-based buffer overflows

) Stack
main:
cookie FP
buf[80] ":
printf()
IP gets()
* Oxbffffce4

Fa

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 40 1127 %;1;&5

-+ DishriNet -

Finding inserted code

» Generally (on kernels < 2.6) the stack will start at a static
address

» Finding shell code means running the program with a
fixed set of arguments/fixed environment

> This will result in the same address

» Not very precise, small change can result in different
location of code

» Not mandatory to put shellcode in buffer used to overflow
» Pass as environment variable

+,
f"%
)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 41 1127 %@;s‘;

. DistriNet -

Research Group

Controlling the environment

Stack start: High addr
Passing shellcode as OXBFFFFFFF 0,0,0,0
environment variable: Program name
Stack start - 4 null bytes Env var n
- strlen(program name) - Env var n-1
- null byte (program name)
- strlen(shellcode) Env var O
Argn

OXBFFFFFFF - 4 A 1

- strlen(program name) - 9N

-1

- strlen(shellcode) Arg 0 Low addr

%

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 49 1127 sg

> Dlsanef s

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 43 1127 %a

\ pf\l |n-|-nv~m ﬂﬂﬂﬂﬂﬂﬂﬂ

-+ DishriNet -

Indirect Pointer Overwriting

» Overwrite a target memory location by overwriting
a data pointer

» An attackers makes the data pointer point to the target
location

» When the pointer is dereferenced for writing, the target
location is overwritten

> |f the attacker can specify the value of to write, he can
overwrite arbitrary memory locations with arbitrary
values

+,
f"%
)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 44 1127 %@;s‘;

) 7
s Di
R

strilet '

esearch Group

Yves Younan

Indirect Pointer Overwriting

fO:
FP

v

call f1

SP

Y

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

data I

C and C++: vulnerabilities, exploits and countermeasures

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO

» DistriNet -

esearch Group

Indirect Pointer Overwriting

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

IP
. f1: Arguments f1
ptr = &data;
buffer(] £p Return address f1
overflow(); ::> Saved frame pointer f1

*ptr = value; Pointer

data Ii SP*

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

R

esearch Group

Indirect Pointer Overwriting

fO:

call f1

f1:
ptr = &data;
buffer(]

mel> | overflow();

*ptr = value;

Yves Younan

data I

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO

Arguments f1

FP

Return address f1

V]

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Saved frame pointer f1

. =1 1 18
striNet -

esearch Group

N %)
) .
R

Indirect Pointer Overwriting

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

f1: Arguments f1
ptr = &data;
buffer(] £p —
P overflow(); ::> Saved frame pointer f1

sl | *ptr = value;
SP ”
data I *

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

- Dighilel -

esearch Group

Indirect Pointer Overwriting

tac
0: Other stack frames
£p Return address fO
call f1 == >>| Saved frame pointer O

Local variables fO
SP

Y

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

data I

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

» DistriNet -

esearch Group

Indirect Pointer Overwriting

»static unsigned int a = 0O;

»Int main(int argc, char **argv) {
> Int *b = &a;

> char buf[80];

> printf("buf: %08x\n", &buf);
> gets(buf);

> *b = strtoul(argv[1], O, 16);
¢)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 50 /127 &‘*
AN P R Y o W I of of of of o WY |

S,

» DistriNet -

esearch Group

Indirect Pointer Overwriting

main:
b = &a;
o buf[80] Stack
== | gets(); Return address

FP

*b = argv[1];

v

Saved frame pointer
b

buf

'

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

. Dlsanef .

rch Group

Indirect Pointer Overwriting

»#define RET Oxbffff9e4+88

»Iint main() {

char buf[84];

Int ret;

memset(buf, \x90', 84);

memcpy(buf, shellcode, strlen(shellcode));
*(long *)&buffer[80] = RET;

printf(buffer);

V.V V V VYV VY

>}

§ 3, *“*
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 50 127 %a 2
N sl il 1N LLLLL - 2

- i
R

shilet -

esearch Group

Indirect Pointer Overwriting

main:
b=&a;
buf[80]

gets();

di *b = argv[l];

Stack

FP

Return address

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Saved frame pointer

: B
%

March 6th, 2008 53 /127

" DistriNlet " »

esearch Group

Indirect Pointer Overwriting

main:
b=&a;
buf[80]

gets();
*b = argv[l];

Stack

P Saved frame pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 54 127 %€

s Dlsanef s

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
= Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 55 [127 %a

\ pf\l |n-|-nv~m ﬂﬂﬂﬂﬂﬂﬂﬂ

-+ DishriNet -

Heap-based buffer overflows

» Heap contains dynamically allocated memory

» Managed via malloc() and free() functions of the
memory allocation library

» A part of heap memory that has been processed by
malloc is called a chunk

» No return addresses: attackers must overwrite data
pointers or function pointers

» Most memory allocators save their memory
management information in-band

. . . ‘Q%‘@a
» Overflows can overwrite management information)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 55 /127 Wi

. Dlsanef .

rch Group

Heap management in dimalloc

» Used chunk

Chunk1

Size of prev. chunk
Size of chunkl

User data

""z
o
'.: &
i s

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 57/ 127 %a 2

» DistriNet -

rch Group

Heap management in dimalloc

» Free chunk: doubly linked list of free chunks

Chunk1

Size of prev. chunk
Size of chunkl
Forward pointer

Backward pointer

Old user data

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 58 / 127

-+ DishriNet -

Heap management in dimalloc

» Removing a chunk from the doubly linked list of

free chunks:
#define unlink(P, BK, FD) {

BK = P->bk;
FD = P->fd:
FD->bk = BK;
BK->fd = FD; }
> TNIS IS 1 fd->bk = P->bk
P->bk->fd = P->fd

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

» DistriNet -

Research Group

Heap management in dimalloc

Chunkl Chunk2 Chunk3
Size of prev. chunk Size of prev. chunk) T Size of prev. chunk
Size of chunkl Size of chunk2 Size of chunk3
Forward pointer Forward pointer Forward pointer
Backward pointer Backward pointer Backward pointer
Old user data Old user data Old user data

Lo
-J'.‘g! ;
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 60 /127 %

) 7
s Di
R

strilet '

arch Group

Heap management in dimalloc

Chunk1

Size of prev. chunk

Chunk3

Size of chunkl

Size of prev. chunk

Forward pointer

Size of chunk3

Backward pointer

Forward pointer

Old user data

Backward pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Old user data

ol
_51%

March 6th, 2008 611127 N

) 7
s Di
R

strilet '

arch Group

Heap management in dimalloc

Chunk1

Size of prev. chunk

Chunk3

Size of chunkl

Size of prev. chunk

Forward pointer

Size of chunk3

Backward pointer

Forward pointer

Old user data

Backward pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Old user data

ol
_51%

March 6th, 2008 60 1127 N4

) 7
s Di
R

strilet '

arch Group

Heap management in dimalloc

Chunk1

Size of prev. chunk

Chunk3

Size of chunkl

Size of prev. chunk

Forward pointer

Size of chunk3

Backward pointer

Forward pointer

Old user data

Backward pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Old user data

ol
_51%

March 6th, 2008 63 1127 N

» DistriNet -

esearch Group

Heap-based buffer overflows

Chunk1
Size of prev. chunk
Size of chunkl
User data
Chunk?2

Size of chunkl
Size of chunk?2
Forward pointer
Backward pointer

Old user data

&
£
{:

3 Nl T
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 64 127

e

= Dighrilet”

rch Group

Heap-based buffer overflows

Chunk1

Size of prev. chunk
Size of chunkl

— Return address

Chunk?2

call f1

Old user data

&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 65/ 127 '%0,

e

= Dighrilet”

rch Group

Heap-based buffer overflows

Chunk1l > After unlink

Size of prev. chunk
Size of chunkl

_

Chunk?2

call f1

Old user data

&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 66 / 127 '%0,

-+ DishriNet -

Dangling pointer references

» Pointers to memory that is no longer allocated
» Dereferencing is unchecked in C
» Generally leads to crashes

» Can be used for code injection attacks when
memory is deallocated twice (double free)

» Double frees can be used to change the memory
management information of a chunk

S,
g B
%&'5
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 67 [127 %

» DistriNet -

Research Group

Double free

Chunk?2 Chunk3
Size of prev. chunk) T'Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

» DistriNet -

Research Group

Double free

Chunk?2 Chunk3
Size of prev. chunk) T'Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

» DistriNet -

Research Group

Double free

Chunk?2 Chunk2 Chunk3
Size of prev. chunk Size of prev. chunk) T Size of prev. chunk
Size of chunk2 Size of chunk2 Size of chunk3
Forward pointer Forward pointer Forward pointer
Backward pointer Backward pointer Backward pointer
Old user data Old user data Old user data

R
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 70 /127 %%

» DistriNet -

Research Group

Double free

Chunk?2 Chunk3
= Size of prev. chunk) Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

» DistriNet -

rch Group

Double free

» Unlink: chunk stays linked because it points to

itself
Chunk?2

1 Size of prev. chunk
Size of chunk?2
Forward pointer

Backward pointer

Old user data

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 72 1 127

b’ %ﬁl"ﬂ

rch Group

Double free

> |f unlinked to reallocate: attackers can now write to

the user data part
Chunk?2

1 Size of prev. chunk
Size of chunk?2

wg:%ﬁ
e

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 73/ 127

se'**

R ey an
' DistriNet -
R

esearch Group

Double free

> |t Is still linked In the list too, so it can be unlinked
again
Chunk?2

Size of prev. chunk > Return address
Size of chunk2

call f1

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 74 1127 %5

" DistriNlet " »

esearch Group

Double free

» After second unlink

Chunk?2

Size of chunk2

call f1

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 75 1127 %%

> Dlsanef s

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 76 1127 %a

\ pf\l |n-|-nv~m ﬂﬂﬂﬂﬂﬂﬂﬂ

-+ DishriNet -

Overflows in the data/bss

segments

» Data segment contains global or static compile-
time initialized data

» Bss contains global or static uninitialized data

» Overflows in these segments can overwrite:

» Function and data pointers stored in the same
segment

» Data in other segments

o,
f"%
)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 77 1127 %@;s‘;

-+ DishriNet -

Overflows in the data/bss

segments

» ctors: pointers to functions to —
execute at program start Ctors
» dtors: pointers to functions to Dtors
execute at program finish o

» GOT: global offset table: used
T : BSS

for dynamic linking: pointers to

absolute addresses

Heap

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 78 1127 %@;s‘;

- Distrilet -

Overflow in the data segment

»char buf[256]={1};

»Int main(int argc,char **argv) {
» strepy(buf,argv[l));
>}

2o
g B
-J'.‘g! ;
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 79 1127 %3

+ DighriNet -

Overflow in the data segment

Data buf[256]
Ctors
Dtors 0x00000000
GOT
BSS
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 g /127

. Dlsanef .

rch Group

Overflow In the data section

» Int main (int argc, char **argv) {

» char buffer[476];

» char *execargv[3] ={ "./abo7", buffer, NULL };

» char *env[2] = { shellcode, NULL };

> Int ret;

> re}‘|e|| %F)FFFFFF 4 - strlen (execargv|0]) - 1 - strlen

> memset(buffer "x90', 476),

» *(long *)&buffer[472] = ret;

> }execve(execargv[O],execargv,env);
>

""z
5

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 g1 1127 %a 2

’ngﬁﬂ% n,

esearch Group

Overflow in the data segment

Data
Ctors
Dtors
GOT
BSS
5@’%
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 g 1127 %ﬂewg

> Dlsanef s

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion

&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 g3 /127 %a

-+ DishriNet -

Format string vu

EElES

» Format strings are used to specify formatting of

output:

> printf(“%d is %s\n”, integer, string); -> “5 is

five”
» Variable number of arguments
» Expects arguments on the stac
» Problem when attack controls t
» printf(input);
> should be prlntf(“%s” mput)

Yves C and C++: vulnerabilities, exploits and counter:

K

ne format string:

LH
March 6th, 2008 g4 1127

» DistriNet -

esearch Group

Format string vulnerabilities

tac
» Can be used to read Other stack frames
arbitrary values from R adiees (0
Saved frame pointer fO
the StaCk Local vgriable fO
> “OA)S OA)X %Xu string
, , Arguments printf:
» Will read 1 string and format string
2 integers from the - Return address pri.ntf
stack 5 i Saved frame ptr printf
SP

&

g B
%&'5
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 g5 [127 %

» DistriNet -

esearch Group

Format string vulnerabilities

tac
» Can be used to read Other stack frames
arbitrary values from Return address fO
Saved frame pointer fO
the StaCk Local vqriable fO
> “OA)S OA)X %Xu string
, , Arguments printf:
» Will read 1 string and format string
2 integers from the - Return address pri.ntf
stack 5 i Saved frame ptr printf
SP

&

g B
%&'5
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 gp /127 %

-+ DishriNet -

Format string vulnerabilities

» Format strings can also write data:

» %n will write the amount of (normally) printed
characters to a pointer to an integer

> “%200x%n” will write 200 to an integer

» Using %n, an attacker can overwrite arbitrary
memory locations:

» The pointer to the target location can be placed some
where on the stack

» Pop locations with “%x” until the location is reached j
yes Yﬁnwrite toCLh@f JJQegﬁuQ&nﬂ!itnm;rﬁZQuQ” March 6th, 2008 g7 /127 fi

> Dlsanef s

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities

» Integer errors
= |nteger overflows
= |nteger signedness errors

» Countermeasures
. (&)
%s @@ n Cl u S I md C++: vulnerabilities, exploits and countermeasures March 6th, 2008 gg /127 %a

» DistriNet -

esearch Group

Integer overflows

» Integer wraps around 0

» Can cause buffer overflows
Int main(int argc, char **argv) {
unsigned int a;
char *buf;
a = atol(argv[1]);
buf = (char*) malloc(a+1);

}

» malloc(0) -> will malloc only 8 bytes

3
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 gg /127 %11:&5

> Dlsanef s

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities

» Integer errors
= Integer overflows
= |nteger signedness errors

» Countermeasures
. (&)
%s @@ n Cl u S I md C++: vulnerabilities, exploits and countermeasures March 6th, 2008 90 /127 %a

- Distrilet -

Integer signedness errors

» Value interpreted as both signed and unsigned
Int main(int argc, char **argv) {

INt a;
char buf[100];
a = atol(argv[1]);
if (a < 100)
strncpy(buf, argv[2], a); }

» For a negative a:
> In the condition, a is smaller than 100
» Strncpy expects an unsigned integer: ais now a large

N
M Y

i H
2 5

Yves Younan pOS|t|Ve Cﬁbﬁrﬂb@ﬁ)ilities, exploits and countermeasures March 6th, 2008 o1 1127 sg

- Dighilel -

esearch Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

-+ DishriNet -

Safe languages

» Change the language so that correctness can be
ensured
» Static analysis to prove safety

> If it can’t be proven safe statically, add runtime checks
to ensure safety (e.g. array unsafe statically -> add
bounds checking)

» Type safety: casts of pointers are limited
» Less programmer pointer control
» Runtime type-information

o,
f"%
)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 93 /127 %@;s‘;

» DistriNet -

esearch Group

Safe languages

» Memory management: no explicit management
= (Garbage collection: automatic scheduled deallocation

= Region-based memory management: deallocate regions as
a whole, pointers can only be dereferenced if region is live

» Focus on languages that stay close to C

oS

g B
%&'5
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 94 1127 %%

» DistriNet -

esearch Group

Safe languages

» Cyclone: Jim et al.

» Pointers:
= NULL check before dereference of pointers (*ptr)
= New type of pointer: never-NULL (@ptr)
= No artihmetic on normal (*) & never-NULL (@) pointers

= Arithmetic allowed on special pointer type (?ptr): contains
extra bounds information for bounds check

= Uninitialized pointers can't be used
» Region-based memory management

» Tagged unions: functions can determine type of -~
weanm@lgUMeERts:. prevents.format.string vulnerahilities. 0 ¥

» DistriNet -

esearch Group

Safe languages

» CCured: Necula et al.

» Stays as close to C as possible

» Programmer has less control over pointers: static
analysis determines pointer type
= Safe: no casts or arithmetic; only needs NULL check
= Sequenced: only arithmetic; NULL and bounds check
= Dynamic: type can't be determined statically; NULL,
bounds and run-time type check

» Garbage collection: free() is ignored

oS

g B
%&'5
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 06 /127 %

- Dighilel -

esearch Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

+ Distrilet -
Probabilistic countermeasures

» Based on randomness

» Canary-based approach
» Place random number in memory
» Check random number before performing action
» |f random number changed an overflow has occurred

» Obfuscation of memory addresses
» Address Space Layout Randomization
» Instruction Set Randomization

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

-+ DishriNet -

Canary-based countermeasures

» StackGuard (SG): Cowan et al.

» Places random number before the return address
when entering function

» Verifies that the random number is unchanged when
returning from the function

» |f changed, an overflow has occurred, terminate
program

o,
f"%
)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 99 /127 %@;s‘;

» DistriNet -

Research Group

StackGuard (SG)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Canary

Local variables fO

IP
fl: Arguments f1
ptr = &data;
buffer(] £p Return address f1
overflow(); ::> Saved frame pointer f1

*ptr = value; Canary
Pointer

data I— Sp Buffer

Yves Younan C and C++: vulnerabilities, exploits and co

Dighillel”
£ . l o
R

esearch Group

StackGuard (SG)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
Canary

Local variables fO

f1:
ptr = &data; Arguments f1
buffer(]
IP FP
* overflow(); ::>

*ptr = value;

data I— <p_ A
Yves Younan C and C++: vulnerabilities, exploits and coum %g

» DistriNet -

esearch Group

Canary-based countermeasures

» Propolice (PP): Etoh & Yoda

» Same principle as StackGuard

» Protects against indirect pointer overwriting by
reorganizing the stack frame:

= All arrays are stored before all other data on the stack (i.e.
right next to the random value)

= Qverflows will cause arrays to overwrite other arrays or the
random value

» Part of GCC >=4.1
»> ‘Stack Cookies in Visual Studio A

7 &
3 Nl T
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 102/ 127 %11:&5

» DistriNet -

Research Group

Propolice (PP)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Canary

Local variables fO

e | f1:
= ke Arguments f1
buffer(] £p Return address f1
overflow(); ::> Saved frame pointer f1

*ptr = value; Canary

Buffer

dat_al\—f LSPWI— Pointer

Yves Younan C and C++: vulnerabilities, exploits and co

wiarolr oll, £UVoO

|

Kall lewvan
' DistriNet -

Research Group

Propolice (PP)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Canary

Local variables fO

P
B 1. A ts f1
rfgumen
ptr = &data,; J
buffer(] £p
overflow(); e
*ptr = value;
data Sp . i
Yves Younan C and C++: vulnerabilities, exploits and co VTETCIT O, ZUU0 TOGT T2l o

» DistriNet -

rch Group

Heap protector (HP)

Chunk1 | » Heap protector: Robertson
Size of prev. chunk
Size of chunkl et al-
SNEE ST > Adds checksum to the chunk
information
User data . :
» Checksum is XORed with a
Chunkz S G global random value
Size of chunk2 » On allocation checksum is
Checksum
Forward pointer added
Backward pointer 3> On free (or other operations)
Old user data checksum Is calculated, .

51%
;;

Yves Younan C and C++: vulnerabilities, exploits and counterme?gQ Red a n d C@mp%ed 105/ 127

» DistriNet -

esearch Group

Contrapolice (CP)

Chunk1 Canaryl . .
Size of prev. chunk | » Contrapolice: Krennmair

Size of chunkl » Stores a random value before

User data and after the chunk
e » Before exiting from a string
Chunk?2 Canary2 copy operation, the random
Size of chunkl value before is compared to the

Size of chunk2 random value after
Forward pointer

Backward pointer | > |f they are not the same, an
Old user data overflow has occured

Canary2

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

-+ DishriNet -

Problems with canaries

» Random value can leak
» For SG: Indirect Pointer Overwriting

» For PP: overflow from one array to the other (e.g.
array of char overwrites array of pointer)

» For HP, SG, PP: 1 global random value
» CP: different random number per chunk
» CP: no protection against overflow in loops

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

. Dlsanef .

rch Group

Probabilistic countermeasures

» Obfuscation of memory addresses
» Also based on random numbers

» Numbers used to ‘encrypt’ memory locations

» Usually XOR
= 39 XORb=c
= cXORb=a

""z
5

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 108/ 127 %a 2

- Distrillet -
Obfuscation of memory addresses

» PointGuard: Cowan et al.

» Protects all pointers by encrypting them (XOR) with a
random value

Decryption key is stored in a register

Pointer is decrypted when loaded into a register
Pointer is encrypted when loaded into memory
-orces the compiler to do all memory access via

>&ea%l%%rgypassed if the key or a pointer leaks
» Randomness can be lowered by using partial overwrite

V V V V

S,
g B
%&'5
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 109/ 127 3%

- Distrilet -

Partial overwrite

» XOR:
» 0x41424344 XOR 0x20304050 = 0x61720314
» However, XOR ‘encrypts’ bitwise
» 0x44 XOR 0x50 = 0x14
» It injected code relatively close:
» 1 byte: 256 possibilities
» 2 bytes: 65536 possibilities

N
St
% 3%

. N
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 110/ 127 %11:&5

» DistriNet -

Research Group

Yves Younan

fO:

call f1

Partial overwrite

&
<

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

tac

Other stack frames

Return address fO

Saved frame pointer fO

FP

::>

Data

Other Local variables fO

Arguments f1

Return address f1

Saved frame pointer f1

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Encrypted pointer

Buffer

Research Group

Partial overwrite

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Data

Other Local variables fO

f1: Arguments f1
ptr = &data;
buffer(] > Return address f1
IP FP :
* overflow(); ::> Saved frame pointer f1
*ptr = value;

SP

*

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

%,
Ty b
""m:w;sﬂ"ﬁ

(SEDAS!

ol
S

N %)
) .
R

. =1 1 18
striNet -

esearch Group

fO:

call f1

f1:

ptr = &data;
= buffer(]
meml=| overflow();
*ptr = value;

Partial overwrite

tac

Other stack frames

Return address fO

Saved frame pointer fO

Data

Other Local variables fO

FP

:

Arguments f1

Saved frame pointer f1

SP

:

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

51y,
%,

ik &
&%Ww::sﬁ‘pﬁﬁ

5800
{3&; .

-+ DishriNet -

Probabilistic countermeasures

» Address space layout randomization: PaX team
» Compiler must generate PIC

» Randomizes the base addresses of the stack, heap,
code and shared memory segments

» Makes it harder for an attacker to know where in
memory his code is located

» Can be bypassed if attackers can print out memory
addresses: possible to derive base address

» Implemented in Windows Vista / Linux >=2.6.12

S,
g B
%&'5
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 1141127 6%

-+ DishriNet -

Probabilistic countermeasures

» Randomized instruction sets: Barrantes et al./Kc et
al.
» Encrypts instructions while they are in memory
» Decrypts them when needed for execution

> |f attackers don'’t know the key their code will be
decrypted wrongly, causing invalid code execution

» |f attackers can guess the key, the protection can be
bypassed

» High performance overhead in prototypes: should be
Yves Younan I m p | e m % !H ngd vu’nl;]rabmieas, L')gm\{\s/ a%ircgntermeasures March 6th, 2008 115/ 127 %&’s‘g

-+ DishriNet -

Probabilistic countermeasures

» Rely on keeping memory secret

» Programs that have buffer overflows could also
have information leakage

» Example:
» char buffer[100];
» strncpy(buffer, input, 100);
» Printf(“%s”, buffer);

»> Strncpy does not NULL terminate (unlike strcpy),
prmtf keeps readmg unt|I a NULL is found (B

C and C++: vulnerabilities, exploits and co March 6th, 2008 1l 127 ¥ ;ﬁ

" DistriNlet " »

esearch Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

-+ DishriNet -

Separation and replication of

iInformation

» Replicate valuable control-flow information
» Copy control-flow information to other memory
» Copy back or compare before using

» Separate control-flow information from other data

» Write control-flow information to other places in
memory

» Prevents overflows from overwriting control flow
Information

» These approaches do not rely on randomness A\

% gNE ¢
Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 118/ 127 %11:&5

-+ DishriNet -

Separation of information

» Dnmalloc: Younan et al.
» Does not rely on random numbers

» Protection is added by separating the chunk
Information from the chunk

» Chunk information is stored in separate regions
protected by guard pages

» Chunk is linked to its information through a hash table
» Fast: performance impact vs. dimalloc: -10% to +5%

» Used as the default allocator for Samhein (open
Yves Younan Sou rce |Q1§)+ vulnerabilities, exploits and countermeasures March 6th, 2008 119/ 127 %5

= Digtrilet -

Research Group

Dnmalloc

Low addresses Hashtable
Guard page
Ptr to chunkinfo
Ptr to chunkinfo

Heap Data

Heap Data

Ptr to chunkinfo
Ptr to chunkinfo
Ptr to chunkinfo

Heap Data

Heap Data

Chunkinfo region
Guard page
Management information

Management information
Management information

Heap Data

Heap Data

Heap Data
Management information

Heap Data Management information

High addresses

Yves Younan C and C++: vulnerabilities, exploits and countermeasures 120/ 127 6%

» DistriNet -

rch Group

Separation of information

» Dnstack (temporary name): Younan et al.
» Does not rely on random numbers

» Separates the stack into multiple stacks, 2 criteria:
= Risk of data being an attack target (target value)

= Risk of data being used as an attack vector (source value)
* Return addres: target: High; source: Low
* Arrays of characters: target: Low; source: High

» Default: 5 stacks, separated by guard pages

= Stacks can be reduced by using selective bounds
checking: to reduce source risk: ideally 2 stacks

» Fast: max. performance overhead: 2-3% (usuall

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 20) 121/ 127

'.:

’ngﬁﬂ% n,

esearch Group

"Dnstack’

Structs (no Structures
Array of char array) (with char.

Pointers pointers Array of struct array)
(no char

array) Array of

Arrays structures

(with char
array)

Array of

Structures (no characters

Saved arrays)
registers Alloca()

Integers Floats

Guard page Guard page Guard page Guard page Guard page

> Stacks are at a fixed location from each other

> |f source risk can be reduced: maybe only 2 stacks
» Map stack 1,2 onto stack one |
> Map stack 3,4.5 onto stack two t)

Yves Younan and C++vulnerabilities, exploits and countermeasures March 6th, 2008 1991127 %258

- Dighilel -

esearch Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

» DistriNet -

rch Group

Paging-based countermeasures

» Non-executable stack: Solar Designer
» Makes stack segment non-executable
» Prevents exploits from storing code on the stack
» Code can still be stored on the heap

» Can be bypassed using a return-into-libc attack

= make the return address point to existing function (e.g.
system) and use the overflow to put arguments on the
stack

» Some programs need an executable stack

» Non-executable stack/heap: PaX team

5 %
Yves Yaynan and C++: vulnerabilitigs, explqits and co termeasunes March 6th, 2008 /127 5
L'Can he Bunacsad wiib raflirhemta-line 24

- Dighilel -

esearch Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Hardened Libraries
» Conclusion

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008

» DistriNet -

esearch Group

Hardened libraries

» FormatGuard: Cowan et al.

» Most format string attacks have more specifiers in the
string than arguments

» Counts the arguments the format string expects and
compares them to the nr of arguments passed

= |f more: format string -> program is terminated

» Libformat: Robbins

» Checks format string: if located in writable memory
and contains %n -> terminate program

» Vlisual Studio: removes %n ()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 126/ 127 %@;s‘;

. Dlsanef .

rch Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion

&)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures March 6th, 2008 1271127 %a

-+ DishriNet -

Embedded and mobile devices

» Vulnerabilities also present and exploitable on
embedded devices

» IPhone LibTIFF vulnerability massively exploited
by to unlock phones

» Almost no countermeasures
> Windows CEb6 has stack cookies

» Different priorities: performance is much more
Important on embedded devices

> Area of future research 5

Cand C++ rabilities, exploits and countermeasures March 6th, 2008 128/127

» DistriNet -

esearch Group

Conclusion

» Many attacks, countermeasures, counter-
countermeasures, etc. exist

» Search for good and performant countermeasures to
protect C continues

» Best solution: switch to a safe language, if possible

» More information:

» Y. Younan, W. Joosen and F. Piessens. Code injection in C and C++:
A survey of vulnerabilities and Countermeasures

» Y. Younan. Efficient countermeasures for software vulnerabilities due
to memory management errors 7\

wesvgpanl), Erlingssore-LowstevelSoftwareSesurity: Attacks andsDafensesz/zr W/

